A subspace estimator for fixed rank perturbations of large random matrices

نویسندگان

  • Walid Hachem
  • Philippe Loubaton
  • Xavier Mestre
  • Jamal Najim
  • Pascal Vallet
چکیده

This paper deals with the problem of parameter estimation based on certain eigenspaces of the empirical covariance matrix of an observed multidimensional time series, in the case where the time series dimension and the observation window grow to infinity at the same pace. In the area of large random matrix theory, recent contributions studied the behavior of the extreme eigenvalues of a random matrix and their associated eigenspaces when this matrix is subject to a fixed-rank perturbation. The present work is concerned with the situation where the parameters to be estimated determine the eigenspace structure of a certain fixed-rank perturbation of the empirical covariance matrix. An estimation algorithm in the spirit of the well-known MUSIC algorithm for parameter estimation is developed. It relies on an approach recently developed by Benaych-Georges and Nadakuditi [8, 9], relating the eigenspaces of extreme eigenvalues of the empirical covariance matrix with eigenspaces of the perturbation matrix. First and second order analyses of the new algorithm are performed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low rank perturbations of large elliptic random matrices ∗ Sean O ’ Rourke

We study the asymptotic behavior of outliers in the spectrum of bounded rank perturbations of large random matrices. In particular, we consider perturbations of elliptic random matrices which generalize both Wigner random matrices and non-Hermitian random matrices with iid entries. As a consequence, we recover the results of Capitaine, Donati-Martin, and Féral for perturbed Wigner matrices as w...

متن کامل

ROP: Matrix Recovery via Rank-One Projections

Estimation of low-rank matrices is of significant interest in a range of contemporary applications. In this paper, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small low-rank perturbations. Both u...

متن کامل

SOLUTION-SET INVARIANT MATRICES AND VECTORS IN FUZZY RELATION INEQUALITIES BASED ON MAX-AGGREGATION FUNCTION COMPOSITION

Fuzzy relation inequalities based on max-F composition are discussed, where F is a binary aggregation on [0,1]. For a fixed fuzzy relation inequalities system $ A circ^{F}textbf{x}leqtextbf{b}$, we characterize all matrices $ A^{'} $ For which the solution set of the system $ A^{' } circ^{F}textbf{x}leqtextbf{b}$ is the same as the original solution set. Similarly, for a fixed matrix $ A $, the...

متن کامل

Robust M-Estimation for Array Processing: A Random Matrix Approach

This article studies the limiting behavior of a robust M-estimator of population covariance matrices as both the number of available samples and the population size are large. Using tools from random matrix theory, we prove that the difference between the sample covariance matrix and (a scaled version of) the robust M-estimator tends to zero in spectral norm, almost surely. This result is appli...

متن کامل

Computation of Pseudospectral Abscissa for Large Scale Nonlinear Eigenvalue Problems

We present an algorithm to compute the pseudospectral abscissa for a nonlinear eigenvalue problem. The algorithm relies on global under-estimator and over-estimator functions for the eigenvalue and singular value functions involved. These global models follow from eigenvalue perturbation theory. The algorithm has three particular features. First, it converges to the globally rightmost point of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2013